
S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 140 | P a g e

Crosscutting Specification Interference Detection at Aspect

Oriented UML-Based Models: A Database Approach

Ahmed Sharaf Eldin*, Maha Hana**, Shady Mohammed Elsaid***
*(Department of Information Systems, Faculty of Computers and Information, Helwan University, Egypt)

**(Department of Information Systems, Faculty of Computers and Information, Helwan University, Egypt,

Department of Business Technology Information, Canadian International College, Egypt)

***(Department of Information Systems, Faculty of Computers and Information, Helwan University, Egypt,

Department of Computer Science, Faculty of Computers and Information Systems, Um Al-Qura University,

Makkah Al-Mukaramah, Saudi Arabia)

ABSTRACT

In aspect oriented development, obliviousness is one of its pillars as it helps developers to implement

crosscutting concerns via aspects, which increases the overall software modularity. Despite of its merits,

obliviousness brings the problem of interferences among aspects as several aspects pointcuts may address the

same joinpoint for the same advice. Existing approaches deals with conflicts at design level use graphs

structures, which increase in size as project size increases. In this work, a relational database model is used to

map aspect oriented design models and then conflicts are extracted by an algorithm runs over this database. This

approach is simpler than other approaches and enables large project sizes while the other approaches get

complicated due to increment in graph size. The proposed approach can be extended to the distributed team

development, dependent on the database engine used.

Keywords – Aspect Oriented Development, Crosscutting Concerns, Databases, Interference Detection.

I. INTRODUCTION
In conventional software development paradigms

like object oriented development; a requirement may

be needed crosswise some modules. This is called a

crosscutting concern. To improve modularity; the

concept of aspect orientation is introduced as an

extension to object oriented development (1).

Aspects in aspect oriented programming – AOP

– implement the crosscutting concerns as separate

modules. Aspects are then woven into a certain point

in code called joinpoints and implement the

crosscutting concerns required in this place. Thus, the

overall system modularity is increased (2).

Developers use AOP are not required to know

where their aspects are going to be woven into, or

what other joinpoints are supposed to be targeted by

aspects. This is called obliviousness (3), which is

source of AOP strength and conflicts as well (4) (5).

Crosscutting concerns are implemented in aspect

via means of pointcuts. A pointcut includes the task

required to be done at a specific point in the code

called joinpoint in a specific action like method call

or execution. A pointcut has to be advised when to

run with regard to the joinpoint, either before, after,

or around. Aspect weaver is then required to weave

the aspect into the point matches the joinpoint

signature and advice (6).

A simple example written in AspectJ enclosed in

listing 1 illustrates aspectual behavior. It includes a

class with an overloaded method, which represents

joinpoints. An aspect is defined with only one

pointcut matches only one signature of the

overloaded method on it call. When a method is

called, aspect weaver examines its signature against

all joinpoints signatures. If a match occurs, its advice

will be woven and run as a part of the running code,

otherwise nothing occurs.

RESEARCH ARTICLE OPEN ACCESS

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 141 | P a g e

Listing 1 Simple Aspect Oriented Program

Conflicts may occur if two or more pointcuts

address the same joinpoint signature. In (2) (4) (5)

researches were conducted toward conflicts among

aspects. The work presented here proposes aspect

conflict detection algorithm – ACDA – that detects

conflicts occur among crosscutting specifications in

aspect oriented design models. Detecting

interferences at design stage gives developers space

to resolve it in abstraction level rather than resolving

it after coding or having it at runtime.

The rest of the paper is organized as: the second

section demonstrates AOP interference problem

subjected in this work. The third section shows the

related work that addresses AOP interference

detection problem. The fourth one explains the

proposed technique that uses relational database

schema and pseudo code. The fifth section includes a

test case and its results run over the proposed

solution. Finally, conclusions and expected future

work.

II. Crosscutting Interference
Obliviousness may cause aspect developers to

write two or more pointcuts that address the same

joinpoint at the same advice which results in a

conflict. This conflict could be caused by exact

method signature matching, or by usage of wildcards

that causes a single pointcut to match with several

joinpoints with different signatures. A wildcard

operator (*) replaces a return type and any

character(s) in module or method names, or replaces

the entire module or method names. A wildcard

operator (..) replaces any number of parameters or

none (7). Listing 2 includes a definition to an aspect

that causes interferences to the program in listing 1.

Listing 2 Crosscutting Specifications Interference

The first three pointcuts defined in listing 2

causes interference with the joinpoints in listing 1.

They all have the same advice, and they match with

the joinpoint with definition int Check.add(int, int).

The pointcut pcIII matches any method starts with ad

that returns any value and declared at any type, class

or aspect, with any number of parameters with any

type. When considering the obliviousness concept,

there is no rule to set the execution order via code. In

other words any of these pointcuts can be executed

first or last.

III. Related Work
Conflicts among aspects are captured at runtime

as unexpected executions or sometimes as runtime

errors. Detecting conflicts at design level have

several advantages as abstraction in models enables

fixing errors in lower cost than in code or

maintenance phases. Fixing conflicts at design level

removes this potential of deviating from model to

actual program. If an aspect oriented CASE tool has

code generation feature, then the code generated is

free from this conflict types.

In (8) a technique represented that analyze AOP

program and then produces a graph that represents

each shared joinpoint. The graph has a runtime state

representation for this joinpoint and the program

elements belong to it such as class and method

signature that is matched by the pointcut. Graph

transformation rules are then applied to this primary

graph. Thus, a meta-graph called labeled transition

system – LTS – is generated. LTS helps in

recognizing the joinpoint execution. Aspects target

this joinpoint are then examined against interference

to ensure that the final execution order is not changed

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 142 | P a g e

due to them. This technique is complicated as it

generates a graph for each joinpoint and processes

each generated graph before runtime. Also, it

captures errors after coding that means high cost of

interference resolution. Researches gathered in (5)

represent several code level detections for

interference among aspect.

Work done in (9) has graph-based model

checker named GROOVE (10) as a back end for

their work. Initially it transforms the aspect oriented

UML-based model into a graph representation. Graph

transformations are then produced to simulate the

runtime behavior of the aspect UML extended model.

This simulation is verified against invariants using

computational tree logic expressions to detect

conflicts among aspects. Despite of this technique

distinction it gets complicated as project size

increases as each program element is represented in a

graph node and edges represent the relationships

among these nodes. It assumes that an aspect oriented

model should contain little number of conflicting

aspects, otherwise it's a poorly designed model or out

of the produced tool capability.

Figure 1 shows a new approach was introduced in

(11) to detect conflicts related to intertype

declarations based on relational database model. It

maps relationships among aspect oriented UML-

based model into a database model. Then through a

set of relational algebraic expressions, conflicts due

to intertype declarations are extracted. This approach

differs from the other graph approaches as it

simplifies the detection mechanism.

Fig. 1 Detecting Intertype Declaration Conflicts Database Model (11)

IV. Aspect Conflict Detection Algorithm:

ACDA
Work presented here relies on (11) model with

little modifications to bring obliviousness into

practice. Figure 1 shows a pointcut is set to be active

on one and only one method defined in a class or an

aspect. This is not quite correct as a pointcut may be

defined in one and only one method in case of not

using wildcards, or may match many methods at

several types if the wildcards are used. In figure 2

there is a new database schema focuses on

crosscutting specification interferences only not with

intertype declarations issue. It overcomes the

mentioned limitation and enables obliviousness

practice.

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 143 | P a g e

Fig. 2 Enhanced Relational Database Schema Represents Aspect Oriented UML-based Model

Listing 3 Obliviousness Example

Listing 3 shows an example for obliviousness

where a pointcut – pcIV – is defined over a method

called addition with vague parameters declared in a

type, class or aspect, named Test. Neither the method

exists nor does the type. Despite of this inexistence,

aspect oriented development allows such definitions

as aspect developer shouldn't have a prior knowledge

of the entire system being developed. In figure 2, this

concern has been addressed by letting a pointcut

defines its method and owner type freely independent

from what is already exists.

In the following listings a line numbered pseudo

code and SQL statements are used to represent

ACDA used to detect crosscutting specification

conflicts at aspect oriented UML-based model. Each

listing demonstrates a logic unit and a brief

illustration is narrated to clear the idea behind. The

main objective of this algorithm is to determine

pointcuts that match in advice and method signature

with regard to wildcard usage. If two or more passed

the two tests then they conflict with each other.

ACDA can be viewed as a series of steps starts

from extracting aspect oriented design model

elements, usually an extended UML class diagram,

and store it in ACDA database. Through

programming logic represented in listings 4:11

matched pointcuts methods, advices, and parameters

are extracted as interfering pointcuts. Figure 3 shows

a block diagram represents ACDA.

Fig. 3 ACDA Block Diagram

Listing 4 ACDA: Initiation

Listing 4 includes the initiation phase, a loop

start in line 3 is considered as outer loop holds all

pointcuts in the system and extracts them one by one.

For each extracted pointcut record, its parameters and

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 144 | P a g e

advices are extracted as well for further comparisons.

To lighten the processing on the database engine

used, exact values at "where" clause are passed,

instead of inner joins. InnerPointcuts record set

includes those pointcuts with the same method name,

type defined in class or aspect, return value, and

action such as call or execute. In this step string

values passed after "like" operator is modified by

replacing all "*" to the database engine used wildcard

such as "%" in Microsoft SQL server.

Listing 5 ACDA: InnerPoincuts

Listing 5 starts an inner loop deals with the

pointcuts found matching with the outer loop current

pointcut. For each single record from those inner loop

pointcuts, its method parameter(s) and advice(s) are

extracted for next step comparisons.

Listing 6 ACDA: Advice Check

As shown in listing 6, ACDA takes into

consideration that a single pointcut may have more

than one advice. The check is done as if any advice at

the outer loop matched with the one in the inner loop

then it shouldn't continue looping and turns

bAdviceMatch into true to proceed to the next step.

This is a key for performance improvement, not to go

to parameter check if no advice matched.

Listing 7 ACDA: Parameter Check – Case I

Listing 7 checks whether two pointcuts are

matched. In parameters there are several cases due to

wildcard (..) usage that can replace any number of

parameters even none. First, ACDA starts with the

exact matching case, where no wildcards used and

only data types and their order are matched in both

outer loop pointcut parameters and inner loop

pointcut parameters.

Listing 8 ACDA: Parameter Check – Case II

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 145 | P a g e

The second case in parameter check comes when

the wildcard (..) is used without any real parameters.

It has several forms, such as using it only at any of

the two pointcuts parameters under check, lines 44-

47, or using it multiple times but without any real

parameter as well, lines 49-52 in listing 8.

Listing 9 ACDA: Parameter Check – Case IIIa

As the parameter wildcard (..) can replace any

number of parameters including zero, this is the first

case addressed in Listing 9. It omits the parameters

from the outer loop pointcut and checks if the

remaining parameters types match the inner loop one.

Case of having this wildcard replaces one and only

one parameter type is resolved already within listing

7.

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 146 | P a g e

Listing 10 ACDA: Parameter Check – Case IIIb

Listing 10 includes the second case of parameter

types matching logic where the parameter type

wildcard used several times to replace any number of

parameter types. First it has to ensure that the start

and the end of the outer loop pointcut parameter

types are identical like those for the inner loop or a

wildcard parameter type. Second the number of non-

wildcard parameter types at outer pointcut parameter

types must be less than or equal to those in the inner

one. Then, start comparing the inner parameters from

the beginning with those at the outer side. If two real

parameters are met, then go the next one at both

sides, if a wildcard is met then proceed to the next

inner parameter type till the end, if found then

proceed to the next otherwise if the outer parameter

type is not found it means no matching. Finally, if all

parameters types in the inner pointcut side are found

in the outer one or a wildcard replaces the missed

one, the parameters are matched, otherwise no

matching.

Listing 11 ACDA: End

The last step in ACDA is shown in listing 11, as

if the parameter types are matched, it means that the

advices are also matched because checking parameter

types is dependent on the advice. Flags bParamMatch

and bAdviceMatch are then reset to false for next

iteration.

V. Experiment
In order to test ACDA, extensive test cases are

generated including all possible conflict causes. In

figure 4, an aspect oriented UML-based model is

created with one class named MyClass and two

extended classes to represent aspects, aspectA and

aspectB.

Pointcuts may target already existing joinpoints

or due to obliviousness may address joinpoints not

created yet. If a joinpoint already exists, then an

extended dependency link, crosscut, will be from

aspect defines the pointcut to type owns the joinpoint

either class or another aspect. Pointcuts themselves

are considered to be an extended type of operations

inside aspect type. Extending UML is done by

stereotyping a UML model element to the specific

domain required. (12) (13).

MyClass has overloaded methods: add and

addition. Some pointcuts like pcA1 and pcB2 targets

already existing joinpoints at MyClass. Some other

pointcuts address joinpoints that do not exist yet like

pcB3. Finally, some methods address generic

joinpoints like pcGn1 that matches any joinpoint in

the system. Table 1 shows data stored in the database

that ACDA works on.

Fig. 4 Aspect Oriented UML-based Model: ACDA Test Cases

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 147 | P a g e

Class

ID NAME ACCESS MODIFIER PARENTID

15 MyClas

s

public NULL

ClassMethod

ID NAME
ACCESS

MODIFIER

STATI

C
FINAL

ABSTRA

CT

RETURN

TYPE

CLASSI

D

26 add public 0 0 0 int 15

27 add public 0 0 0 float 15

28 add public 0 0 0 float 15

29 add pubic 0 0 0 float 15

30 add public 0 0 0 double 15

31 add public 0 0 0 double 15

32 add public 0 0 0 double 15

33 addition public 0 0 0 double 15

34 addition public 0 0 0 double 15

Class Method Param

ID TYPE METHOD ID

30 int 26

31 int 26

32 int 27

33 float 27

34 float 28

35 int 28

36 float 29

37 float 29

38 double 30

39 double 30

40 int 31

41 double 31

42 double 32

43 int 32

44 float 33

45 double 33

46 double 34

47 float 34

PointcutMethodParam

PMPID NAME PID

3 int 16

4 int 16

5 .. 18

6 double 19

7 float 19

8 .. 20

9 .. 21

10 int 22

11 int 22

12 int 23

13 .. 23

14 int 24

15 int 24

16 .. 25

17 int 25

18 .. 25

19 int 25

20 .. 25

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 148 | P a g e

Table 1 ACDA Test Cases Equivalent Data

21 float 26

22 int 26

23 float 26

24 int 26

25 double 26

26 float 27

27 .. 27

28 int 27

29 .. 27

30 double 27

31 .. 28

32 .. 29

33 .. 29

Aspect

ID NAME ACCESS MODIFIER PARENTASPECT

12 aspectA public NULL

13 aspectB public NULL

Pointcut

ID NAME
ON

ACTION

OWNERASPEC

TID
ABSTRACT

METHOD

OWNER

NAME

METHO

D
RETURN

16 pcA1 call 12 0 MyClass add int

18 pcA2 call 12 0 MyClass add *

19 pcA3 call 12 0 MyClass addition double

20 pcA4 call 12 0 MyClass add* *

21 pcB1 call 13 0 MyClass add* *

22 pcB2 call 13 0 MyClass add int

23 pcB3 call 13 0 My2ndClas

s

add *

24 pcB4 call 13 0 * * *

25 pcC1 call 13 0 MyClass add int

26 pcC2 call 13 0 MyClass add int

27 pcC3 call 13 0 MyClass add int

28 pcGn1 call 13 0 * * *

29 pcGn2 call 13 0 * * *

30 pcGn3 call 13 0 MyClass add int

PointcutAdvice

ID NAME
POINTCUT

ID

15 before 16

16 before 19

17 before 20

18 before 22

19 before 23

20 before 24

21 before 18

22 before 21

23 after 22

24 around 22

25 before 25

26 before 26

27 before 27

28 before 28

29 before 29

30 before 30

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 149 | P a g e

VI. Results
After running ACDA, the following results in

table 2 come out. Each pointcut is examined against

the rest pointcuts, and the pointcuts interfere with it

only will appear as a conflict points, denoted by (♦)

in the intersection between the row and the column

represent each pointcut.

It is not always a mutual exclusive task, meaning

that a certain pointcut may interfere with another one

and vice versa, or may not. If two or more pointcuts

address a certain joinpoint signature, they are

conflicting mutually exclusive, such as pcA1 and

pcB2. If one or more of them address the joinpoint

via wildcard, it means that the wildcard holders are

conflicting with other pointcuts but not necessarily

the others do, such as pcA2 and pcA1.

Table 2 shows diagonal in shaded form as

ACDA can recognize that a pointcut cannot interfere

with itself although matching occurs. Other empty

cells also indicated there is no conflict between the

two pointcuts at the row and column headers and they

are different.

Table 2 ACDA Experiment Results

VII. Conclusion and Future Work
Although AOP takes modularity to its extreme, it

introduces problem of conflicts among its modules.

Approaches discussing this problem from graph

perspective resolved this problem within limit due to

its complexity.

The approach discussed in this paper is believed to

provide an automated, modular, and simple solution

to a complicated problem in aspect oriented design

models. Automation comes as there is no manual user

interactions required for the conflicts extraction.

Modularity comes as the detection is done isolated

from the design model and won't affect it. Simplicity

comes as to implement ACDA there is no need for

sophisticated techniques or expertise.

ACDA relies on the UML-based ones, but it can

be extended to any design model takes into

consideration that aspect oriented development is an

extended form of object oriented development. The

solution provided in (11) can be augmented to the

solution proposed here to resolve both conflict types

in intertype declarations and crosscutting

specifications.

In this approach, queries are done over pointcut,

pointcut method param, and advice tables. Thus, it

isn’t affected by number of aspects, or classes and

therefore it reduces the overall cost of detection

process.

ACDA avoids self-join queries by passing

parameters to a new query for extracting data. This

increases the efficiency of ACDA as database

engines uses indexers over its key attributes. For

those non-key attributes indices can be created to

enhance ACDA performance as well.

CASE tools supports aspect oriented modelling

can be supported by ACDA either with a local

database file or a server database in case of multiuser

environment. If a local file solution is selected, XML

format and X-Queries can be used to implement

ACDA. Standardizing aspect modelling either by

UML-based extensions or as a new modelling

technique is now useful to support aspect oriented

development after detection crosscutting

specification and intertype declaration interferences

easily. Thus, aspect oriented development can be

refreshed up again.

References
[1] Berg, Klaas van den, Conejero, Jose Maria

and Chitchyan, Ruzanna. AOSD ontology

1.0 public ontology of aspect orientation. s.l.

: Common Foundation for AOSD, 2005. p.

90, Report.

[2] Aspects: Conflicts and Interferences (A

Survey). André Restivo, Ademar Aguiar.

2007. Proceedings of the 2nd Conference on

S Mohammed Elsaid et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 7), August 2014, pp.140-150

 www.ijera.com 150 | P a g e

Methodologies for Scientific Research. pp.

145-153.

[3] Robert E. Filman, Daniel P. Friedman.

Aspect-Oriented Programming is

Quantification and Obliviousness. Research

Inistitution for Advanced Computer Science.

s.l. : Workshop on Advanced Separation of

Concerns, 2001.

[4] Durr, Pascal, Bergmans, Lodewijik and

Aksit, Mehmet. Reasoning about Behavioral

Conflicts between Aspects. Enschede :

University of Twente, 2007. Technical

Report . TR-CTIT-07-15.

[5] Katz, Emillia, et al. Detecting Interference

Among Aspects. Computing Department,

Lancaster University. Lancaster : European

Network of Excellence on Aspect-Oriented

Software Development, 2007. p. 38, Report.

[6] Aspect-Oriented Programming. Gregor

Kiczales, John Lamping, Anurag

Mendhekar, Chris Maeda, Cristina Videira

Lopes,. Finland: Springer-Verlag, 1997.

European Conference on Object-Oriented

Programming (ECOOP). pp. 220-242.

[7] Kiselev, Ivan. Aspect_Oriented

Programming with AspectJ. 2nd Edition. s.l.

: SAMS, 2003. 0-672-32410-5.

[8] Staijen, Tom and Rensink, Arend. A graph-

transformation-based semantics for

analysing aspect. Natal, Brazil : Workshop

on Graph Computation Models,, 2006.

[9] Ciraci, Selim, et al. A graph-based aspect

interference detection approach for UML-

based aspect-oriented models. [ed.] Shmuel

Katz and Mira Mezini. Transactions on

aspect-oriented software development.

Heidelberg : Springer-Verlag, 2010, Vol.

VII, pp. 321- 374.

[10] Model Checking Dynamic States in

GROOVE. Kastenberg, Harmen and

Rensink, Arend. Berlin : Springer-Verlag,

2006, Vol. 3925.

[11] Detecting Aspect Intertype Declaration

Interference at Aspect Oriented Design

Models: A Database Approach. Sharaf Elin,

Ahmed, Hana, Maha and Mohammed

Elsaid, Shady. 7, India : IJERA, July 2014,

International Journal of Engineering

Research and Applications, Vol. 4, pp. 164-

171. 2248-9622.

[12] UML Extensions for Aspect Oriented

Software Development. Losavio, Francisca,

Matteo, Alfredo and Morantes, Patricia. 5,

July 2009, Journal of Object Technology,

Vol. 8, pp. 85-103.

[13] Extending UML Using Enterprise Architect.

UML tools for software development and

modelling - Enterprise Architect UML

modeling tool. [Online] 5 2010. [Cited: 1 24,

2012.]

http://www.sparxsystems.com/bin/EAUserG

uide.pdf.

